HALF ADDER - FULL ADDER - MUX

Truth Tables and Verilog Codes for one-bit Half Adder and Full Adder


HALF ADDER


By using half adder, you can design simple addition with the help of logic gates. 



Half Adder
0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 10

These are the least possible single-bit combinations. But the result for 1+1 is 10, the sum result must be re-written as a 2-bit output. Thus, the equations can be written as

0+0 = 00
0+1 = 01
1+0 = 01
1+1 = 10
The output ‘1’of ‘10’ is carry-out. ‘SUM’ is the normal output and ‘CARRY’ is the carry-out.
Half Adder Logic Circuit

HALF ADDER TRUTH TABLE :

 S= A’B+AB’
C=AB



If we want to write Verilog modules and testbench codes including every possible outcome, for Half Adder and Full Adder:

HALF ADDER CODE:

module halfandfull(A,B,C,S);

input A,B;

output C,S;

assign C = A^B;
assign S = A&B;
endmodule


HALF ADDER TEST BENCH CODE:

module halffulltb;

                reg A;
                reg B;

                wire C;
                wire S;

                halfandfull uut (
                               .A(A),
                               .B(B),
                               .C(C),
                               .S(S)
                );
initial begin
                               A = 0;
                               B = 0;
                               #10;

                               A = 0;
                               B = 1;
                               #50;

                               A = 1;
                               B = 0;
                               #100;

                               A = 1;
                               B = 1;
                               #150;

   End


Half Adder Output

FULL ADDER

This adder is difficult to implement than a half-adder. 
The difference between a half-adder and a full-adder is that the full-adder has three inputs and two outputs, whereas half adder has only two inputs and two outputs. 
The first two inputs are A and B and the third input is an input carry as C-IN.


Full Adder

The output carry is designated as C-OUT and the normal output is designated as S.


Full Adder Logic Circuit


FULL ADDER TRUTH TABLE




S=((A’B+AB’)Cin’)+((A’B+AB’)’Cin)



Cout=((A’B+AB’’)Cin)+AB




FULL ADDER CODE:

module fulladddder(A,B,Cin,S,Cout);

 input A,B,Cin;

                output S,Cout;

                assign S = (A^B)^Cin;
                assign Cout = ((A^B)&Cin) | (A&B) ;

endmodule

FULL ADDER TEST BENCH CODE:

module fulladdertb;
                reg A;
                reg B;
                reg Cin;

                wire S;
                wire Cout;
               
fulladddder uut (
                               .A(A),
                               .B(B),
                               .Cin(Cin),
                               .S(S),
                               .Cout(Cout)
                );
initial begin
                               A = 0;
                               B = 0;
                               Cin = 0;
                               #10;

                               A = 0;
                               B = 0;
                               Cin = 1;
                               #25;

                               A = 0;
                               B = 1;
                               Cin = 0;
                               #50;

                               A=0;
                               B=1;
                               Cin =1;
                               #75;

                               A=1;
                               B=0;
                               Cin=0;
                               #100;

                               A=1;
                               B=0;
                               Cin=1;
                               #125;

                               A=1;
                               B=1;
                               Cin=0;
                               #150;

                               A=1;
                               B=1;
                               Cin=1;
                               #175

       End
       Endmodule

Full Adder Output
The implementation of larger logic diagrams is possible with the above full adder logic a simpler symbol is mostly used to represent the operation. Given below is a simpler schematic representation of a one-bit full adder.

Full Adder Design Using Half Adders
MULTIPLEXER

The multiplexer or MUX is a digital switch, also called as data selector. 

Let's write Verilog module code for a 2to1 multiplexer with inputs 1-bit MuxIn1, 1-bit MuxIn0, 1-bit Slct and output 1-bit MuxOut.

TWOTOONE MUX CODE:

module muxtwotoone(muxin,select,muxout);

input  [1:0] muxin;
input  select;

output reg muxout;

always @(muxin,select)

begin

if(select == 1'b1) muxout = muxin[0];
else if ( select == 1'b0 ) muxout = muxin[1];

end


Let's write testbench code for 2 to 1 multiplexer with respect to the inputs and time intervals given below;


TEST BENCH CODE OF TWOTOONE MUX:

module twotoonetbb;

                reg [1:0] muxin;
                reg select;

                wire muxout;

                muxtwotoone uut (
                               .muxin(muxin),
                               .select(select),

.muxout(muxout));


initial begin
                               muxin = 2'b10;
                               select = 1'b0;
                               #10;

                               muxin = 2'b10;
                               select = 1'b1;
                               #25;

                               muxin = 2'b01;
                               select = 1'b0;
                               #30;

                               muxin = 2'b01;
                               select = 1'b1;
                               #50;

                               end

     endmodule



Now let's design a 1-bit full adder with 2 to 1 multiplexers (inverters can be used as well). Draw and include your design in your reports.






M.K.


You can reach  VHDL Codes for Full and Half Adder from this site : 

Yorumlar

Bu blogdaki popüler yayınlar

İngilizce Öğrenmek

Mühendislikte Kadın